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Abstract. We present general model-independent formulae for the branching ratios and the direct tagged
CP asymmetries for the inclusive B̄ → Xd γ and B̄ → Xs γ modes. We also update the corresponding SM
predictions.
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1 Introduction

In the near future more precise data on the inclusive decay
B → Xsγ is expected from the B factories, but also the
present experimental accuracy already reached the 10%
level as reflected [1,2,3,4,5,6] in the world average of the
present measurements:

B(B̄ → Xsγ) = (3.34 ± 0.38) × 10−4. (1)

In addition, direct CP asymmetries within this mode are
now within experimental reach [7,8]:

ACP(B̄ → Xsγ) =
{−0.079 ± 0.108stat ± 0.022syst

−0.004 ± 0.051stat ± 0.038syst
(2)

In the first measurement of CLEO there is a small conta-
mination of the B̄ → Xdγ mode.

All these measurements are compatible with the stan-
dard model (SM) predictions and thus lead to severe con-
straints on new physics models [9,10,11,12,13,14], which
represents very valuable information for the direct search
for physics beyond the SM (for recent reviews, see [15,16,
17]).

A direct measurement of the inclusive B̄ → Xdγ mode
is rather difficult, but perhaps still within the reach of the
present high-luminosity B factories. However, the CP vio-
lation within that mode can be perhaps tested indirectly
by an untagged CP measurement (see below).

In this letter we present general model-independent
formulae for the branching ratios and the direct tagged CP
asymmetries for the inclusive B̄ → Xs,dγ modes as explicit
numerical expressions for these observables as functions
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of Wilson coefficients and CKM angles. The extraction of
the latter from experimental data depends critically on
the assumptions about the presence and the structure of
new physics contributions to several key observables.

For this purpose we update and generalize the SM
results at NLL level given in [18,19] and [20,21,22] in
order to accommodate new physics models with new
CP-violating phases and also implement several impro-
vements. For a detailed discussion of our results we refer
the reader to a forthcoming paper [23].

2 NLL predictions

The general effective hamiltonian that governs the inclu-
sive B̄ → Xqγ decays (q = d, s) in the SM is

Heff(b → qγ) = −4GF√
2

VtbV
∗
tq × (3)

×
(

8∑
i=1

CiOi + εq

2∑
i=1

Ci(Oi − Ou
i )

)

where εq = (VubV
∗
uq)/(VtbV

∗
tq) and the most relevant ope-

rators are:

O1 = (q̄LγµT acL)(c̄LγµT abL),
Ou

1 = (q̄LγµT auL)(ūLγµT abL),
O2 = (s̄LγµcL)(c̄LγµbL) ,

Ou
2 = (s̄LγµuL)(ūLγµbL) ,

O7 = (e/16π2)mb(s̄LσµνbR)Fµν

O8 = (gs/16π2)mb(s̄LσµνT abR)Ga
µν .

The subscripts L and R refer to left- and right-handed
components of the fermion fields. In b → s transitions the
contributions proportional to εs are rather small, while in
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b → d decays the εd term is of the same order as the first
term in effective hamiltonian.

Regarding the input parameters we focus here on the
issue of the charm mass definition in the matrix element of
O2: In [18], it is argued that all the factors of mc come from
propagators corresponding to charm quarks that are off-
shell by an amount µ2 ∼ m2

b . It seems, therefore, more rea-
sonable to use the MS running charm mass at a scale µ in
the range (mc, mb). The reference values of the charm and
bottom masses are mc = mMS

c (mMS
c ) = (1.25 ± 0.10) GeV

and mb = m1S
b , where the 1S mass of the b quark is defi-

ned as half of the perturbative contribution to the Υ mass
as usual: m1S

b = (4.69 ± 0.03) GeV. We first fix the cen-
tral value of mc = 1.25 GeV and vary µ; then we add in
quadrature the error on mc (δmc

= 8%). The resulting
determination is:

mc

mb
= 0.23 ± 0.05 . (4)

The pole mass choice corresponds, on the other hand, to
mc

mb
= 0.29 ± 0.02. Note that the question whether to use

the running or the pole mass is, strictly speaking, a NNLL
issue. The most conservative position consists in accep-
ting any value of mc/mb that is compatible with any of
these two determinations: 0.18 ≤ mc/mb ≤ 0.31. Taking
into account our experience on higher-loop computations,
we are led to the educated guess that the central value
mc/mb = 0.23 represents the best possible choice, but we
allow for a large asymmetric error that fully covers the
above range (and that reminds us of this problem that
can be solved only via a NNLL computation):

mc

mb
= 0.23+0.08

−0.05 . (5)

We present our SM updates for two different energy
cuts within the photon spectrum E0 = (1.6 GeV, mb/20).
There are four sources of uncertainties: the charm mass
(δmc/mb

), the CKM factors (δCKM(s) = 0.5%, δCKM(d) =
11%), the parametric uncertainty, including that of the
overall normalization, αs and mt (δparam), and the per-
turbative scale uncertainty (δscale):

B(B̄ → Xsγ; Eγ > 1.6 GeV) × 104 =

(3.56 +0.24
−0.40

∣∣
mc
mb

± 0.02CKM ± 0.24param. ± 0.14scale) (6)

B(B̄ → Xdγ; Eγ > 1.6 GeV) × 105 =

(1.36 +0.14
−0.21

∣∣
mc
mb

± 0.15CKM ± 0.09param. ± 0.05scale) (7)

B(B̄ → Xsγ; Eγ > mb/20) × 104 =

(3.74 +0.26
−0.44

∣∣
mc
mb

± 0.02CKM ± 0.25param. ± 0.15scale) (8)

B(B̄ → Xdγ; Eγ > mb/20) × 105 =

(1.44 +0.15
−0.23

∣∣
mc
mb

± 0.16CKM ± 0.10param. ± 0.06scale). (9)

The CKM uncertainties are almost negligible in b → sγ
transitions but play an important role in b → dγ ones.
This implies the large impact on the CKM phenomenology
of the latter. We note that in the b → d mode there is an

additional uncertainty due to the up quark loops which is
suppressed by ΛQCD/mb (for details see [15]).

The direct CP asymmetries in B̄ → Xqγ are defined
by

Ab→qγ
CP ≡ Γ [B̄ → Xqγ] − Γ [B → Xq̄γ]

Γ [B̄ → Xqγ] + Γ [B → Xq̄γ]
. (10)

It was shown that the CP asymmetry in the b → s mode
is below 1% [20,21,22] within the SM. This small value is
a result of three suppression factors. There is an αs factor
needed in order to have a strong phase; moreover, there
is a CKM suppression of order λ2 and there is a GIM
suppression of order (mc/mb)2, reflecting the fact that in
the limit mc = mu any CP asymmetry in the SM would
vanish. Within the SM the CP asymmetry in the b → d
mode is enhanced, with respect to the one in the b → s
mode, by the CKM factor [λ2 ((1 − ρ)2 + η2)]−1.

We update the SM predictions, which are essentially
independent of the photon energy cut-off (E0) and get (for
E0 = 1.6 GeV):

Ab→sγ
CP = (0.44 +0.15

−0.10

∣∣
mc
mb

±0.03CKM
+0.19
−0.09

∣∣
scale)% (11)

Ab→dγ
CP = (−10.2 +2.4

−3.7

∣∣
mc
mb

±1.0CKM
+2.1
−4.4

∣∣
scale)%. (12)

The additional parametric uncertainties are subdominant.
However, the scale uncertainties are rather large because
the CP asymmetries arise at the O(αs) only. This purely
perturbative uncertainty can be removed by a NNLL QCD
calculation.

The so-called untagged CP asymmetry A
b → (s+d) γ
CP is

the favoured observable, at least from the theoretical point
of view. A simple expression of this observable is given by

A
b→(s+d)γ
CP =

Ab→sγ
CP + Rds Ab→dγ

CP

1 + Rds
, (13)

Rds = ΣΓd/ΣΓs, ΣΓq := Γ (B̄ → Xqγ) + Γ (B → Xq̄γ).
As was first noticed in [24], the untagged CP asymme-

try vanishes within the SM if the U-spin limit is conside-
red. This is a direct consequence of CKM unitarity. Wit-
hin the inclusive channels, one can rely on parton–hadron
duality and can actually compute the U-spin breaking by
keeping a non-vanishing strange quark mass [25]. In [26]
U-spin breaking effects were estimated and found to be
completely negligible, even beyond the leading partonic
contribution within the heavy mass expansion. Thus, the
measurement of the untagged CP asymmetry provides a
very clean SM test, whether generic new CP phases are
active or not. Any significant deviation from the SM zero
prediction would be a direct hint of non-CKM contributi-
ons to CP violation. An analysis of the untagged asymme-
try within various new physics scenarios will be presented
in [23].

3 Model-independent formulae

We assume within our model-independent analysis of new
physics effects that the dominat ones only modify the Wil-
son coefficients of the dipole operators O7 and O8 and also
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introduce contributions proportional to the corresponding
operators with opposite chirality:

OR
7 = (e/16π2) mb(q̄RσµνbL)Fµν , (14)

OR
8 = (gs/16π2) mb(q̄RT aσµνbL)Gaµν . (15)

This is known as a very good approximation for the most
relevant new physics scenarios.

Within our model-independent formulae for the bran-
ching ratios and CP asymmetries, the Wilson coefficients
C7,8(R) and C7,8 and all the CKM ratios are left unspeci-
fied. The explicit derivation of the formulae given below
can be found in [23]. The branching ratio can be written
as

B(B̄ → Xqγ) =
N
100

∣∣∣∣V
∗
tqVtb

Vcb

∣∣∣∣
2

Bunn , (16)

where N = 2.567 (1 ± 0.064) × 10−3 is an overall norma-
lization factor, the ratios R7,8 and R̃7,8 are

R7,8 =
(C(0)SM

7,8 + C
(0)NP
7,8 )(µ0)

C
(0)SM
7,8 (mt)

, R̃7,8 =
C

(0)NP
7,8R (µ0)

C
(0)SM
7,8 (mt)

,

and the unnormalized branching ratio is

Bunn =
[
a + a77 (|R7|2 + |R̃7|2) + ar

7 Re(R7) + ai
7 Im(R7)

+a88 (|R8|2 + |R̃8|2) + ar
8 Re(R8) + ai

8 Im(R8)

+aεε |εq|2 + ar
ε Re(εq) + ai

ε Im(εq) + ar
87 Re(R8R

∗
7 + R̃8R̃

∗
7)

+ar
7ε Re(R7ε

∗
q) + ar

8ε Re(R8ε
∗
q) + ai

87 Im(R8R
∗
7 + R̃8R̃

∗
7)

+ai
7ε Im(R7ε

∗
q) + ai

8ε Im(R8ε
∗
q)
]
. (17)

The CP asymmetry is given by

Ab→qγ
CP =

1
Bunn Im

[
ai
7 R7 + ai

8 R8 + ai
ε εq

+ai
87 (R8R

∗
7 + R̃8R̃

∗
7) + ai

7ε R7ε
∗
q + ai

8ε R8ε
∗
q

]
. (18)

The numerical values of the coefficient functions are collec-
ted in Table 1.
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